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Abstract— This paper proposes a new event-triggered adap-
tive horizon model predictive control for discrete-time nonlinear
systems with additive disturbance. With the event-triggered
control scheme, the optimization problem is solved only at
triggering instant and the event is triggered if the difference
between the actual state and the predicted state exceeds the
triggering threshold. The triggering threshold depends on the
prediction horizon and becomes larger as the state approaches
the terminal constraint set. Therefore, larger triggering inter-
vals can then be obtained. Finally, a numerical example shows
the effectiveness of the proposed scheme.

I. INTRODUCTION

The model predictive control (MPC) technique has demon-
strated exceptional success in studying the multi-input multi-
output systems and constrained systems. At each time step, a
constrained optimal control problem (OCP) is solved online,
the sequence of optimal control actions is obtained and then
the first element is applied to the system. Such processes will
be repeated at the next time step [1]. The conventional MPC
usually has large computation burden, which precludes the
wider applications in many “fast” systems, e.g., quadrotors,
servo systems and unmanned vehicles. Hence, it is theoreti-
cally and practically significant to treat this problem.

The consumption of the computing resource is mainly due
to the frequent solving of the OCP with large prediction
horizon and system dimensionality. To reduce the computing
time, a remote server or cloud computing system with strong
processing capability, which exchanges sensing and control
data with sensors and actuators through communication net-
work, can be employed, forming a networked MPC scheme
[2]. On the other hand, an adaptive prediction horizon MPC
algorithm can be adopted to reduce the computing complex-
ity [3]. Additionally, event-triggered MPC has received much
attention, and the computation burden can be reduced as
the MPC algorithm is performed only when the triggering
condition is violated (the error between the actual state and
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the predicted one exceeds the triggering threshold), see, e.g.,
[4]–[8]. The positive consequences of the event-triggered
mechanism include the reduction of the frequency of solving
MPC and the saving of the communication resource.

However, the event-triggered mechanisms proposed in the
aforementioned works rely on a fixed conservative triggering
threshold because of the conservative Lipschitz constant and
large prediction horizon. Recently, a novel event-triggered
mechanism is proposed for continuous-time system in [9],
where the prediction horizon shrinks as the state approaches
the terminal set and the triggering threshold is inversely cor-
related with the shrinking prediction horizon. A similar idea
can also be found in [10] where the self-triggered scheme
and the update of the prediction horizon are co-designed for
discrete-time system. But considering the constraint that the
triggering interval (the time interval between two consecutive
triggering instants) is not more than the prediction horizon,
the shrinking horizon also brings negative effect especially
when the state is in the terminal set, the prediction horizon is
0, leading to the consecutive triggering and the necessity of
extra countermeasure to address it. Wang et al. [11] propose
a dual event-triggered mechanism, i.e., two distinct triggering
conditions are employed for the case that the state is outside
the terminal set and the case in the terminal set. Although the
consecutive triggering has been treated, the fixed triggering
threshold is small and conservative. Both the aforementioned
two ideas have their advantages and disadvantages, therefore,
design an event-triggered mechanism that combines these
advantages to reduce the usage of the computing and com-
munication resources is our main focus.

In this paper, we propose a novel event-triggered MPC
scheme, where the predictive state and control sequences
with constant sequence length are generated collectively by
the adaptive horizon MPC algorithm and the auxiliary control
law. The triggering occurs only if the difference between
the estimated state and the actual state exceeds a threshold
that relies on the variable prediction horizon. For the state
outside the terminal set, the triggering condition inherits the
advantages of the one presented in [9], i.e., the triggering
threshold increases as the prediction horizon shrinks, and
meanwhile the upper bound of the triggering interval is
relaxed from the shrinking prediction horizon in [9], [10] to a
fixed large horizon. When the state is in the terminal set, the
triggering condition still works and the triggering threshold
reaches its maximum as the prediction horizon becomes zero,
then transmission frequency can be significantly reduced.

This paper is organized as follows. Section II describes
the system. The event-triggered MPC scheme is designed in
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Section III. Section IV verifies the proposed scheme by a
simulation example. Section V concludes this paper.

II. SYSTEM DESCRIPTION AND PRELIMINARIES

We consider an open-loop unstable discrete-time nonlinear
system with additive perturbation:

x(k + 1) = f(x(k), u(k)) + w(k), k ≥ k0 (1)

where x(k) ∈ Rn is the state, u(k) ∈ Rp is the control input,
w(k) ∈ Rm is the bounded disturbance and k0 represents the
initial time. We assume the control input and disturbance
satisfy the following constraints:

u(k) ∈ U ⊆ Rp, w(k) ∈ W ⊆ Rm, ∀k ≥ k0. (2)

The constraint sets U andW are compact and contain origin
as an interior point. Let ‖w‖P := maxw∈W

√
wTPw be the

upper bound of the disturbance.
For ease of exposition, we introduce the nominal system

of system (1) by letting w(k) ≡ 0,

x̂(k + 1) = f(x̂(k), û(k)), k ≥ k0 (3)

which satisfies f(0, 0) = 0, where û(k) ∈ U .
In the following, the widely used concepts on the MPC

are recalled. Performing the MPC algorithm needs to solve
an OCP online. Let N be the prediction horizon. Then we
define the following MPC cost function with the optimization
variables ûN (k) = {û(k|k), . . . , û(k +N − 1|k)} as

V (x(k), ûN (k), N) =

N−1∑
i=0

l(x̂(k + i|k), û(k + i|k))

+ F (x̂(k +N |k)) (4)

where l(x, u) = xTQx+ uTRu and F (x) = xTPx are the
stage cost and terminal cost, respectively. Here Q, R and P
are some positive definite weighting matrices. Then the OCP
is defined as

min
ûN (k)

V (x(k), ûN (k), N)

s.t. x̂(k + i|k) = f(x̂(k + i− 1|k), û(k + i− 1|k))

x̂(k|k) = x(k)

û(k + i|k) ∈ U , i = 0, . . . , N − 1

x̂(k +N |k) ∈ Xf

(5)

where Xf is the terminal state constraint set. The op-
timal predicted state sequence is denoted by x̂∗N (k) =
{x̂∗(k + 1|k), . . . , x̂∗(k + N |k)}. Define a set X (N) =
{x(k)|∃ûN (k) ∈ UN : x̂(k + N |k) ∈ Xf}, which denotes
the set of states that can reach Xf within N steps.

The following assumptions impose some restrictions on
the system model, stage cost function, terminal cost function
and terminal state constraint set, and are often adopted to
guarantee stability and feasibility.

Assumption 1: The function f(x, u) satisfying f(0, 0) =
0 is local Lipschitz continuous w.r.t. x in X (N)× U , i.e.,

‖f(x, u)− f(y, u)‖P ≤ Lx‖x− y‖P (6)

where Lx is Lipschitz constant and P is weighted matrix.

The above Lipschitz continuity assumption guarantees the
existence of a unique solution of system (1). Furthermore,
since system (1) is open-loop unstable, we have Lx ≥ 1.
Moreover, when Lx < 1, we can simply set Lx = 1.

Assumption 2 ( [11]): The stage cost function l(x, u), ter-
minal cost function F (x), terminal constraint set Xf and the
auxiliary control law κ(x) satisfy the following properties,
for all x, y ∈ X (N), u ∈ U ,
(1) Xf ⊂ X (N), 0 ∈ Xf and Xf is a compact set;
(2) κ(x) ∈ U , ∀x ∈ Xf ;
(3) f(x, κ(x)) ∈ Xf , ∀x ∈ Xf ;
(4) F (f(x, κ(x)))− F (x) ≤ −l(x, κ(x)), ∀x ∈ Xf ;
(5) There exists a compact set Φ ⊂Xf and 0 ∈ Φ such that

f(x, κ(x)) ∈ Φ for all x ∈ Xf ;
Remark 1: The properties (1)-(4) are fairly standard and

are widely adopted in MPC literature [12]. Here, we mainly
focus on the last property. The terminal set is taken as Xf =
{x|‖x‖P ≤ εf}. For simplicity, we also define the set Φ =
{x|‖x‖P ≤ ε} with ε < εf . In general, determining the
ε analytically for a nonlinear system is an intractable task.
Instead, for practical purpose we will find ε via simulations
from a sampling of the states in Xf . In addition, the related
Lipschitz constants can also be estimated by such approach.

III. MAIN RESULTS

In this section, the event-triggered adaptive horizon MPC
is designed, the feasibility and stability are then analyzed.

A. Event-triggered Adaptive Horizon MPC

The schematic block diagram of the event-triggered MPC
scheme is depicted in Fig.1 and the overview is stated as
follows. Transmissions of the states measured periodically by
the sensor are determined by the event-triggered mechanism.
At each triggering time, the remote controller generates the
predictive control and state sequences simultaneously, and
transmits them to the actuator and the event generator, re-
spectively. The control signal applied to the plant is updated
and provided by the actuator periodically. In the following,
we design the MPC-based controller and then determine the
event-triggered mechanism.

PlantSensor

Event
Generator

Controller

Actuator

( )x k

( )ix k

( )ˆ ikx ( )ˆ iku

( )u k

Networks

Buffer1Buffer2

( )ˆ | iu k k( )ˆ | ix k k

Fig. 1. Overall control structure, where two buffers provide the control
input and predictive state from the corresponding sequences, respectively.

1) MPC-based controller: The role of the controller in
Fig.1 is to generate predicted control and state sequences
with length Nmax at each triggering instant. At time ki (the
ith triggering instant), both the state and control sequences
consist of two parts, the first N(ki) elements that are gener-
ated based on MPC with prediction horizon N(ki), and the
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remaining Nmax −N(ki) elements that are computed based
on the auxiliary control law κ(x), see Fig.2. To be specific,
given the current state x(ki), the optimal predicted control
sequence û∗N(ki)

(ki) = {û∗(ki|ki), . . . , û∗(ki + N(ki) −
1|ki)} can be obtained by solving OCP (5) with prediction
horizon N = N(ki). The corresponding predicted state se-
quence x̂∗N(ki)

(ki) = {x̂∗(ki+1|ki), . . . , x̂∗(ki+N(ki)|ki)}
can also be obtained. According to this state sequence, the
parameter N∗(ki), the minimum number of steps such that
x̂∗(ki +N∗(ki)|ki) ∈ Xf , can be determined.

( )*
iN k

( )1iN k +

ik

1ik +

( )ikD

( )iN k

maxN

maxN

MPC ( )xk

Fig. 2. A diagram of the relationships among N(ki), N(ki+1), N∗(ki),
∆(ki) and Nmax.

Denote the triggering interval between two consecutive
triggering time instants by ∆(ki), and ∆(ki) = ki+1 − ki.
The update of the prediction horizon is designed as:

N(ki+1) = max{N∗(ki)−∆(ki) + 1, 0} (7)

where N(k0) = N0 and N0 is the initial prediction horizon.
The relationship among N(ki), N(ki+1), Nmax, N∗(ki) and
∆(ki) is illustrated in Fig.2. One can easily observe that
N(ki+1) ≤ N∗(ki) ≤ N(ki), i.e., the prediction horizon is
non-increasing with respect to the triggering instant.

The procedure of computing the remaining Nmax−N(ki)
elements of state and control sequences is given as follows:

û(ki + j|ki) = κ(x̂(ki + j|ki));
x̂(ki + j + 1|ki) = f(x̂(ki + j|ki), û(ki + j|ki))

(8)

where j = N(ki), . . . , Nmax − 1 and x̂(ki + N(ki)|ki) =
x̂∗(ki + N(ki)|ki). It should be indicated that such proce-
dure can be performed with high efficiency as some basic
arithmetic operations are needed.

Incorporating the MPC results and the procedure (8), the
state and control sequences with fixed length Nmax are given
by x̂(ki) = {x̂N(ki)(ki), x̂(ki + N(ki) + 1|ki), . . . , x̂(ki +
Nmax|ki)} and û(ki) = {ûN(ki)(ki), û(ki +N(ki)|ki), . . . ,
û(ki + Nmax − 1|ki)}. We omit the superscript “*” from
x̂∗N(ki)

(ki) and û∗N(ki)
(ki) when the optimality of both

sequences is not emphasized. Note that if N(ki) = 0, only
the procedure (8) is carried out.

2) Event-triggered condition: Due to the disturbance, the
estimated error between the actual state and predicted one
is growing larger over time. Hence, we design the following
event-triggered condition

‖x(k)− x̂(k|ki)‖P ≤ (εf − ε)L−(N∗(ki)+1)
x − ‖w‖P

Lx
k − ki ≤ Nmax

(9)

where ‖w‖P ≤ (εf − ε)L−N(k0)−1
x guarantees the validity

of the first triggering condition. When either of the above
conditions is violated at time k, the next triggering time is
then ki+1 = k.

From the above triggering condition, one may notice that
the following inequality holds

‖x(ki+1 − 1)− x̂(ki+1 − 1|ki)‖P
≤(εf − ε)L−(N∗(ki)+1)

x − ‖w‖P /Lx.
Then, we further obtain

‖x(ki+1)− x̂(ki+1|ki)‖P
≤Lx‖x(ki+1 − 1)− x̂(ki+1 − 1|ki)‖P + ‖w‖P
≤(εf − ε)L−N

∗(ki)
x . (10)

This inequality provides an upper bound of the estimated
error at the next triggering instant, and is a prerequisite for
achieving the recursive feasibility.

Remark 2: Compared with the triggering condition pro-
posed in [11], i.e.,

ki+1 = min
ki<k≤ki+Nmax

{‖x(k)− x̂(k|ki)‖P ≥ c} if x(k) /∈ Xf ;

min
ki<k
{‖x(k)− x̂(k|ki)‖P ≥ αc} otherwise.

where the first triggering condition with a constant threshold
c that is relatively small and leads to conservative triggering
intervals, the incremental triggering threshold in (9) enables
to extend the triggering interval, especially when the state
is close to the terminal set (means small N∗(ki)). For the
following triggering condition in [9] (the event-triggered
adaptive horizon MPC for continuous-time nonlinear system
is studied therein),

‖x(tk+1)− x̂∗(tk+1)‖ ≤ c1e−LxT
∗
k

tk+1 − tk ≤ T ∗k
where T ∗k plays a similar role of N∗(ki). Notice that the
condition tk+1 − tk ≤ T ∗k hinders the merit brought by the
incremental triggering threshold c1e−LxT

∗
k because T ∗k (also

an upper bound of the triggering interval) shrinks even to
0 (when x(k) ∈ Xf ). This drawback has been overcome
by the condition k − ki ≤ Nmax in (9), where Nmax is a
large constant. In summary, the advantages of both triggering
conditions have been maintained and the demerits have been
bypassed due to the usage of the adaptive horizon MPC and
the predicted state sequence with fixed length Nmax.

The overall event-triggered adaptive horizon MPC scheme
is demonstrated by Algorithm 1.

B. Recursive Feasibility

In this part, the feasibility is analyzed, which means the
existence of the solution of MPC at each update time.

At each triggering time ki, the state and control sequences
are generated, where the first N(ki) elements are obtained
by solving the MPC and the last Nmax −N(ki) element is
obtained by (8). Note that if x(ki) ∈ Xf , i.e., N(ki) = 0,
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Fig. 2. The control structure of the event-triggered model
predictive control scheme.

on the auxiliary control law (x), see Fig.3. To be specific,
given the current state x(ki), the optimal predicted control
sequence û⇤

N(ki)
(ki) = {û⇤(ki|ki), . . . , û

⇤(ki+N(ki)�1|ki)}
can be obtained by solving the aforementioned OCP (5)
with prediction horizon N = N(ki). The related predicted
state sequence x̂⇤

N(ki)
(ki) = {x̂⇤(ki + 1|ki), . . . , x̂

⇤(ki +

N(ki)|ki)} can also be obtained. Then the N⇤(ki), the
required steps such that x̂⇤(ki + N⇤(ki)|ki) firstly enter
into Xf , can be determined accordingly.

ە ۖ ۖ ۖ ۖ ۖ ۖ ۔ ۖ ۖ ۖ ۖ ۖ ۖ ۓ

( )*

i
N k

( )1iN k �

i
k

1ik �

( )
i
k%

( )
i

N k

maxN
ۓۖۖۖۖۖۖ۔ۖۖۖۖۖۖە

maxN

MPC ( )xk

Fig. 3. A diagram of the relationships among �(ki), N(ki),
N⇤(ki), N(ki+1) and Nmax.

Denote the triggering interval between two consecutive
triggering time instants by �(ki), and �(ki) = ki+1 � ki.
The update of the prediction horizon is designed as:

N(ki+1) = max{N⇤(ki) ��(ki) + 1, 0} (7)

where N(k0) = N0 and N0 is the initial prediction horizon.
The relationship among N(ki), N(ki+1), Nmax, N⇤(ki) and
�(ki) is illustrated in Fig.3. One can easily observe that
N(ki+1)  N⇤(ki)  N(ki), i.e., the prediction horizon is
non-increasing with respect to the triggering instant.

The procedure of computing the remaining Nmax �N(ki)
elements of state and control sequences is given as follows:

û(ki + j|ki) = (x̂(ki + j|ki));

x̂(ki + j + 1|ki) = f(x̂(ki + j|ki), û(ki + j|ki))
(8)

where j = N(ki), . . . , Nmax � 1 and x̂(ki + N(ki)|ki) =
x̂⇤(ki + N(ki)|ki). It should be indicated that such proce-
dure can be performed with high e�ciency.

Incorporating the MPC results and the procedure (8), the
state and control sequences with fixed length Nmax are
given by x̂(ki) = {x̂N(ki)(ki), x̂(ki+N(ki)+1|ki), . . . , x̂(ki+
Nmax|ki)} and û(ki) = {ûN(ki)(ki), û(ki + N(ki)|ki), . . . ,
û(ki + Nmax �1|ki)}. We omit the superscript “*” from
x̂⇤

N(ki)
(ki) and û⇤

N(ki)
(ki) when the optimality of both

sequences is not emphasized. Note that if N(ki) = 0, only
the procedure (8) is carried out.

Event-triggered condition Due to the disturbance, the
estimated error between the actual state and predicted one
is growing larger over time. Hence, we design the following
event-triggered condition

kx(k) � x̂(k|ki)kP  (✏f � ✏)L�(N⇤(ki)+1)
x � kwkP

Lx

k � ki  Nmax

(9)

where kwkP  (✏f � ✏)L
�N(k0)�1
x guarantees the validity

of the first triggering condition. When either of the above
conditions is violated, the next triggering time is ki+1 = k.

From the above triggering condition, one may notice that
the following inequality holds

kx(ki+1 � 1) � x̂(ki+1 � 1|ki)kP

(✏f � ✏)L�(N⇤(ki)+1)
x � kwkP /Lx.

Then, we further obtain

kx(ki+1) � x̂(ki+1|ki)kP

Lxkx(ki+1 � 1) � x̂(ki+1 � 1|ki)kP + kwkP

(✏f � ✏)L�N⇤(ki)
x . (10)

This inequality provides an upper bound of the estimated
error at the next triggering instant, and is a prerequisite
for achieving the recursive feasibility.

The remainder of this part concludes the overall event-
triggered adaptive horizon MPC scheme by Algorithm 1.

Algorithm 1 Event-Triggered Adaptive Horizon MPC

Initialization: The initial state x(k0), the initial pre-
diction horizon N0 and the length of predicted control
sequence Nmax.
1: At any triggering instants k = ki, initialize the state

x̂(ki|ki) = x(ki). If i > 0, then update the predicted
horizon N(ki) according to (7); else, N(k0) = N0.

2: If N(ki) = 0, go to step 3. Otherwise, solve the OCP
to obtain the predicted state sequence x̂⇤

N(ki)
(ki) and

control sequence û⇤
N(ki)

(ki), and determine N⇤(ki);

3: Compute the predicted state and control sequences
with length Nmax�N(ki) according to (8), and combine
with x̂⇤

N(ki)
(ki) and û⇤

N(ki)
(ki) to get x̂(ki) and û(ki).

4: Apply û(k|ki) from û(ki) to system (1), and update the
time k = k + 1.

5: If the triggering condition (9) is violated, set ki+1 = k,
i = i + 1, go to step 1. Otherwise, go to step 4.

Remark 4. In contrast to the event-triggered fixed-horizon
MPC scheme presented in Wang et al. (2019), the adaptive
prediction MPC is more computationally e�cient and the
prediction horizon-related triggering threshold enables to
extend the triggering interval as the state approaching
to Xf . Moreover, thanks to the predicted state sequence
with fixed length Nmax, the constraint �(ki)  N(ki) in
Hashimoto et al. (2017) has been replaced by �(ki) 
Nmax, which makes the event-triggered mechanism (9) still
valid when x(ki) 2 Xf .

3.2 Recursive Feasibility

In this part, the feasibility is analyzed, which means the
existence of the solution of MPC at each update time.

At each triggering time ki, the state and control sequences
are generated, where the first N(ki) elements are obtained
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then both sequences are generated based on (8) and thus
there is no need to perform the feasibility analysis. With
triggering condition (9), prediction horizon update scheme
(7) and the above analysis, the recursive feasibility of the
adaptive horizon MPC can be established.

Theorem 1: Consider the constrained system (1) with the
event-triggered condition (9). Suppose that the prediction
horizon is determined according to (7), then the MPC is
recursive feasible.

Proof: The result can be verified by induction. At time
ki, suppose that the MPC with prediction horizon N(ki) >
0 is feasible, and the resultant optimal control sequence is
denoted by ûN(ki)(ki). Then two cases, ∆(ki) ≥ N∗(ki)+1
and ∆(ki) < N∗(ki) + 1, are considered.

For the case of ∆(ki) ≥ N∗(ki) + 1, then we have

‖x(ki+1)‖P ≤ ‖x(ki+1)− x̂(ki+1|ki)‖P + ‖x̂(ki+1|ki)‖P
≤ (εf − ε)L−N

∗(ki)
x + ε ≤ εf (11)

This means the state x(ki+1) has been steered into Xf , then
the MPC will not be performed at time ki+1.

For the case of ∆(ki) < N∗(ki)+1, the prediction horizon
is given by N(ki+1) = N∗(ki) − ∆(ki) + 1. We construct
the following control sequence ūN(ki+1)(ki+1) at triggering
time ki+1 as follows:

ū(ki+1 + j|ki+1)

=

{
û∗(ki+1 + j|ki), j = 0, . . . , N∗(ki)−∆(ki)− 1

κ(x̂(ki+1 +N∗(ki)|ki)), j = N∗(ki)−∆(ki)

(12)

and use x̄(ki+1+j+1|ki+1) = f(x̄(ki+1+j|ki+1), ū(ki+1+
j|ki+1)) with x̄(ki+1|ki+1) = x(ki+1) to denote the pre-
dicted state by applying ūN(ki+1)(ki+1).

In order to prove the recursive feasibility, we need to verify
the satisfaction of the control constraint and terminal state
constraint. To be specific,

1) The control constraint is met, i.e., ū(ki+1 + j|ki+1) ∈
U , ∀j = 0, . . . , N(ki+1). This follows directly the
feasibility of û∗N(ki)

(ki) and κ(x) ∈ U , ∀x ∈ Xf .

2) By applying ūN(ki+1)(ki+1), the terminal state x̄(ki+1+
N(ki+1)|ki+1) is in the terminal set Xf . Firstly, we
study the difference between x̄(ki+1 + N(ki+1)|ki+1)
and x̂∗(ki+1 + N(ki+1)|ki), and then based on which
obtain the upper bound of the terminal state. Indeed,
incorporating Assumption 1 and the construction of
ūN(ki+1)(ki+1) yields

‖x̄(ki+1 +N(ki+1)|ki+1)− x̂∗(ki+1 +N(ki+1)|ki)‖P
≤LN(ki+1)

x ‖x(ki+1)− x̂∗(ki+1|ki)‖P
≤LN∗(ki)−∆(ki)+1

x (εf − ε)L−N
∗(ki)

x

≤εf − ε (13)

Then, by using the triangle inequality, we obtain

‖x̄(ki+1 +N(ki+1)|ki+1)‖P
≤‖x̂(ki +N∗(ki) + 1|ki)‖P + εf − ε ≤ εf (14)

where the first inequality holds because ki +N∗(ki) +
1 = ki+1 + N(ki+1), and the second inequality holds
because of the property (5) in Assumption 2 and the
fact that ‖x̂(ki +N∗(ki)|ki)‖P ≤ εf .

The proof is then completed.

C. Stability analysis

In this part, the stability of the system with the designed
event-triggered condition is analyzed. The line of the proof
is similar to that of [9]. To be specific, we first show that the
prediction horizon could reduce to zero in finite steps, and
then show that the state will never leave Xf forever.

According to (4), the optimal MPC value function at time
ki can be defined as

V ∗N̄ (x(ki)) = V (x(ki), û
∗
N(ki)

(ki), N(ki)) (15)

where N̄ = N(ki), and û∗N(ki)
(ki) is the optimal control

sequence. In addition, since the MPC value function (4) is
local Lipschitz continuous, then the optimal value function
(15) is also Lipschitz continuous [12, Theorem C.29]. That is,
there exists a constant LV such that the following inequality
holds for all x, y ∈ X (N̄)

|V ∗N̄ (x)− V ∗N̄ (y)| ≤ LV ‖x− y‖P (16)

This constant can be approximated by simulation offline.
Theorem 2: Consider system (1), assume that the event-

triggered adaptive horizon MPC scheme is implemented. If
for any x(k0) ∈ X (N(k0))/Xf and w(k) satisfying

‖w‖P ≤ min{(εf − ε)L−N(k0)
x , (θQ − θ)/LV } (17)

where LV is defined in (16), θQ = min‖x‖P>εf x
TQx and θ

is a given small positive constant, then the prediction horizon
reduces to zero within finite steps, and the system state x(k)
remains in Xf for all k ≥ ki, where ki is the first triggering
instant such that N(ki) = 0.

Proof: We prove this result by contradiction. Suppose
that N(ki) > 0 (x(ki) /∈ Xf ) forever. Then we can claim that
there exists an integer j > 0 such that N(ki) = N(kj) > 0
for all i ≥ j. This is because the prediction horizon N(ki)
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defined in (7) is nonincreasing with respect to i. Furthermore,
we also observe that N∗(ki) = N(ki) and ∆(ki) = 1 for all
i ≥ j. Now, we focus on the evolution of the optimal MPC
value function after time kj .

Let the optimal MPC value function (15) be the Lyapunov
function, then the difference of Lyapunov functions at time
ki+1 and ki (i ≥ j and N̄ = N(kj)) is given by

V ∗N̄ (x(ki+1))− V ∗N̄ (x(ki))

≤V ∗N̄ (x(ki+1))− V ∗N̄ (x̂∗(ki+1|ki))
+ V (x̂∗(ki+1|ki), ūN̄ (ki+1), N̄)− V ∗N̄ (x(ki)) (18)

By using the arguments in [13], we can directly obtain the
following inequality

V (x̂∗(ki+1|ki),ūN̄ (ki+1), N̄)−V ∗N̄ (x(ki))≤−‖x(ki)‖2Q (19)

where ūN̄ (ki+1) is defined in (12). Recall that

|V ∗N̄ (x(ki+1))− V ∗N̄ (x̂∗(ki+1|ki))| ≤ LV ‖w‖P (20)

Substituting (19), (20) and (17) into (18) yields

V ∗N̄ (x(ki+1))− V ∗N̄ (x(ki)) ≤ −θ (21)

Then, by induction we obtains V ∗
N̄

(x(ki+1)) ≤ V ∗
N̄

(x(kj))−
(i − j)θ, which means that there always exists an instant t
such that V ∗

N̄
(x(kt)) < 0, which contradicts with V ∗(x) ≥ 0.

Therefore, the prediction horizon will reduce to 0 within
finite steps.

Once N(ki) = 0, then we have x(ki) ∈ Xf . According
to property (5) in Assumption 2, we claim that x̂(k|ki) ∈ Φ
for all ki < k ≤ ki+1. Note that

‖x(k)‖P ≤ ‖x(k)− x̂(k|ki)‖P + ‖x̂(k|ki)‖P ≤ εf (22)

where the second inequality holds because of (10) with
N∗(ki) = 0. In fact, we also have N(ki+1) = 0. Hence, the
conclusion that x(k) ∈ Xf for all k ≥ ki with N(ki) = 0 can
be drawn by induction directly. These complete the proof.

Remark 3: The local Lipschitz constant of the optimal
MPC value function is used in obtaining the decreasing
property of the Lyapunov function. An alternative way is
to use the Lipschitz constants of the system model, stage
cost and terminal cost to obtained the difference between
V (x(ki+1), ūN̄ (ki+1), N̄) and V ∗

N̄
(x(ki)), see, e.g. [11]. But

such method is usually conservative due to the repeated use
of these Lipschitz constants.

IV. NUMERICAL EXAMPLE

In this section, we consider the following example to show
the effectiveness of the proposed event-triggered mechanism.
The model of the continuous stirred tank reactor (CSTR) is
adopted from [14]:

dCA
dt

=
q

V
(CAf − CA)− k0 exp

(
− E

RT

)
CA + wCA

dT

dt
=
q

V
(Tf − T )− ∆Hk0

ρCp
exp

(
− E

RT

)
CA (23)

+
UA

V ρCp
(Tc − T ) + wT

TABLE I
PARAMETERS DESCRIPTION

Symbols Value Symbols Value
ρ 1000 g/l Cp 0.239 J/gK

∆H −5× 104 J/mol E/R 8750 K
k0 7.2× 1010 min−1 U.A 5.4× 104 J/min K
q 100 l/min Tf 350 K
V 100 l CAf 1.0 mol/l
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Fig. 3. State evolutions under Algorithm 1 and the periodic MPC.

where CA is the concentration of A in the reactor, T and Tc
are the temperatures of the reactor and the coolant stream,
respectively. The related parameters of the model are given
in Table. I. Under these conditions, an unstable equilibrium
state is CeA = 0.5 mol/l, T e = 350 K and T ec = 300 K. The
control input, i.e., the coolant stream, is constrained to 280 K
≤ Tc ≤ 370 K. In order to obtain the nonlinear system (1),
we define the system state as x = [CA −CeA, T − T e]T , the
control input as u = Tc − T ec , and then adopt the forward-
Euler discretized method with sampling interval Ts = 0.03
min. The initial condition is CA(0) = 0.38 mol/l, T (0) =
320 K. Our aim is to design control scheme to achieve the
equilibrium state.

The stage cost and terminal cost are given by l(x, u) =
xTQx + uTRu and F (x) = xTPx, respectively, where
Q = diag{1, 1/1500} and R = 1/900. The initial prediction
horizon N(k0) = 12 and the fixed length of the predicted
state and control sequences is Nmax = 30. The terminal
state constraint set is Xf = {x : ‖x‖P ≤ 1.4832} and the
auxiliary local controller is κ(x) = Kx, where

P =

[
116.5500 0.2245
0.2245 0.6671

]
, K =

[
−105.5642 −3.0915

]
A smaller set determined by property (5) in Assumption 2
is Φ = {x : ‖x‖P ≤ 1.4384}. The computed local Lipschitz
constant is Lx = 1.3865. Let w = [wCA

, wT ], then according
to Theorem 2, we assume the allowable disturbance set is
W = {w ∈ R2|‖w‖P ≤ w̄} where w̄ = 0.0667.

In the simulation, the comparisons of the proposed event-
triggered adaptive horizon MPC scheme and the conventional
periodic fixed-horizon MPC (N = 12) in [13] are made and
the results are shown in Fig.3-5. Note that the OCPs are
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Fig. 5. The prediction horizon and the triggering instants obtained with
‖w‖P ≤ 0.0667.

solved by MATLAB subroutine fmincon. Fig.3 shows the
state evolutions and Fig.4 depicts the corresponding input
trajectories. It can be observed that under both two control
schemes the states converge to the equilibrium point fast
and enter into the terminal set Xf within finite steps. The
actual control inputs also satisfy the control constraint. The
updates of the prediction horizon and the triggering instants
are depicted in Fig.5. Note that when the state is in terminal
set (N(ki) = 0), the event-triggered mechanism in (9) is still
valid. We can see that the triggering interval becomes larger
as the prediction horizon shrinks and a larger triggering
threshold can thus be obtained. In particular, the triggering
intervals are relatively large when the state stays in the
terminal set Xf . The number of triggering is 13 among 100
time steps, which means 87% of communication resources
are saved. The total computing time and control performance
(defined by

∑T
k=0 l(xk, uk) with T being the running steps)

are presented in Table.II. It can be seen that although the total
computing time is significantly reduced, the degradation of
the control performance is fairly small.

V. CONCLUSION

The problem of the event-triggered MPC for a class of
discrete-time nonlinear systems with additive disturbance

TABLE II
COMPUTING TIME AND CONTROL COST

Total computing time Control cost
Periodic MPC 14.7645s 24.2923

Algorithm 1 2.3499s 26.6378

has been addressed. A new event-triggered adaptive horizon
MPC with networked configuration has been designed, where
the triggering condition depends on the prediction horizon.
On the one hand, the OCP is solved only at triggering instant
determined by the event-triggered mechanism; on the other
hand, the prediction horizon is shrinking as the state is driven
to the terminal set, which in turn enlarges the triggering
interval and further reduces the number of triggering. Under
this event-triggered MPC scheme, the computing time has
been reduced, the computation and communication resources
have been saved. Future work involves considering the delays
and the packet dropouts in transmission over networks.
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